

The Moon: New Views on Formation and Impact History

Pham Nguyen Michigan State University and Albion College

Outline

Why Study the Moon?

It has a well preserved impact history

Far side of the Moon taken during Apollo 16 Credit: NASA

Informs dynamical models of the solar system

How do we Study the Moon?

Lunar Samples

Apollo Missions ~382 Kg

Apollo 16 sample 60025

Credit NASA/Johnson Space Center photograph

S72-42187

Luna Program ~0.326 Kg

20 cm portion of Luna 20 core sample

Credit NASA/Johnson Space Center photograph S73-17207

Lunar Samples (Cont.)

Meteorites (~150 found)

MAC 88105 a 663 gram sample found in Antarctica

Credit: NASA photo S89-38379

Lunar Orbiters

Many lunar orbiter missions including:

- Lunar Prospector (1998-1999)
- Lunar Reconnaissance Orbiter (2009-Present)
- Gravity Recovery and Interior Laboratory (2011-2012)

So...what is the Moon like?

Surface Features of the Moon

Credit: Dustin Scriven

Outline

To Make a Moon

What aspects of the Moon need to be explained?

- Angular momentum
- Composition (lack of volatiles)
- Small (iron) core

Fission

Requires very large angular momentum

Wise. D. U. 1966

Capture

capture Doesn't explain compositional similarities

Binary Accretion

Weidenschilling et al. 1986

Giant Impact

General Model:

- Mars sized impactor ('Theia')
- Angled impact
- Moon accretes from debris disk

Giant Impact

Features:

- Angular moment
- Depleted iron core
- Common in early solar system

Impact Simulation

Impact Simulation (Cont.)

Geochemistry Challenge

The Moon is TOO similar to Earth!

Asphaug 2014

Also similar in Ti, W, K, O...

Alternative Impact Models

Two objects with equal masses

Alternative Impact Models (Cont.)

Donut shaped cloud of debris ('synestia')

Outline

The Late Heavy Bombardment

First ~600 million years of solar system

Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

Models of Impact Flux and the 'Terminal Cataclysm'

Prevailing view from 1990s

The Nice Model

How do we explain a late impact flux increase?

Many modifications e.g. 'Jumping Jupiter model'

Did a Terminal Cataclysm Happen?

- Material > 3.9 billion years old
- Contamination from Imbrium
- Orbital data reveals more impact craters

Sawtooth Model

Modest increase starting ~4.2 - 4.1 Ga

Outline

Lunar Impact Glasses

Credit: Dustin Scriven

Research Project

Investigate claimed increase in flux over last 0.4 Gy

Impact Glasses

Characteristics:

- Age (⁴⁰Ar/³⁹Ar dating)
- Composition (MgO, TiO₂, etc.)
- Shape (shards vs spheres)

Key question: Are spheres bias to young ages?

Age Trends

Compositional Trends

Korotev et al. (2011), Levine et al. (2005), Meyer et al. (1971), and Wentworth et al. (1994)

Hypothesis

Over time, Impact events destroy older spheres

Regolith Dynamics Models

Simulations can model impact events and populations of impact glasses

Conclusion

Apparent increase in impact flux is the result of sampling bias

Summary

- Moon formed from an impact event
- 'Terminal Cataclysm' falling out of favor
- No recent increase in impact flux

Acknowledgements

- Dr. Zellner
- Albion College
- NSF Astronomy and Astrophysics grant

Thank you!

Problems

Moon's orbital inclination

Solutions

Gravitational interaction with planetesimals

Tidal evolution from the Sun

Argon Dating

Timeline

Basin Ages

Crater	Age (Ga) (1974–2006)	Age (Ga) (2009-present)
South Pole - Aitken	4.05 - ~4.3	4.0-4.4 (?)
Serenitatis	3.893 ± 0.009	3.83-4.1+
Nectaris	3.89-3.92	3.92-4.2 (?)
Crisium	3.85-3.93	~3.9 (?)
Imbrium	3.85 ± 0.02	3.72-3.93
Orientale	3.77-3.83	3.72-3.93

Zellner 2017